Basketball Data Extraction from Broadcast-Angle Video Footage

Alexander Bendeck and Niyaz Nurbhasha Mentors: Alex Volfovsky and Harsh Parikh

Background

- One of four projects in a "Basketball Analytics Pipeline"
- Our goal: Extract player and ball movement data from free broadcast-angle video footage

Methods

- Instance Segmentation
 - Implemented using the Mask R-CNN neural network model
 - For computing, used an online environment called Supervisely
- Human Keypoint Detection
 - Implemented using the OpenPose API developed at Carnegie Mellon
 - For computing, used GPU nodes on the Duke Compute Cluster

• What we did

Data

- Detect players, referees, court/paint
- Clean raw coordinate and image data
- Future work
 - Detect basketball
 - Refine algorithms
 - Expand training dataset

Object Detection

- OpenPose
 - Detects 25 keypoints on the human body
 - Often picks up noise (fans)
 - Occasionally fails to detect some players
- Mask R-CNN
 - Used weights file pre-trained on COCO dataset
 - Mostly able to recognize people on the court
 - Can struggle with overlapped players
 - Also trained on Referees, Ball, Court, and Paint
 - Paint and court were detected easily, but referees and ball were not

Model	Precision	Recall	F1 Score
5-epochs-referees	49.9 %	68.9 %	57.9 %
10-epochs-referees	50.2%	63.9%	56.2%
5-epochs-ball	13.1%	12.5%	12.8%
10-epochs-ball	16.8%	31.5%	21.9%

OpenPose player detection

Mask R-CNN player detection

Data Cleaning & Processing

- Method for detecting referees without Mask R-CNN
 - Sharpen images w/ custom filters
 - Hough Line Transform to detect vertical lines on referee shirts
 - Results: On small dataset (30 players, 7 referees), all refs identified correctly
- Affine Transformation: Linear mapping between images preserving parallel lines
 - Map player locations down to an absolute court location, clean noise with court cutoffs

Above: Before Affine Transformation Right: After Affine Transformation

- Team clustering (classifies 29/30 players correctly)
 - K-Means clustering (k = 3) to identify top pixel colors within each image
 - K-Means clustering again (k = 2) to group by most prevalent color vector
- Optical Flow: "Track" players between frames
 - Custom algorithm: Given a keypoint location in one frame, predict that the closest keypoint in the next frame is the same person
 - Good for short intervals (< 25 frames)
 - OpenCV algorithm: Follows points given by OpenPose across frames
 - Accurate only for a few frames (< 10)
 - Bad when players cross each other

Output of OpenCV Optical Flow algorithm